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PREFACE

The work described in this publication was performed by the
Mathematical Analysis Research Corporation (MARC) under contract to
the Jet Propulsion Laboratory, an operating division of the California
Institute of Technology. This activity 1is sponsored by the Jet
Propulsion Laboratory under contract N1S7-918, RE182, A187 with the
National Aeronautics and Space Administration, for the United States

Army Intelligence Center and School.

This specific work was performed in accordance with the FY-87

statement of work (SOW #2).

oTIC

coery
INSPECTED

' Accession For

I NTIS GRA&I 4
| DTIC TAB n]
- Unarmounced g

% Justification e ]

: BY e
:Mbjﬁtptbutlpnl_ .

Avallability Cod?p
" " Avail and/or
U1se ! Spscial

.'(\

LIV‘.!W B R R Y A AV 00 a B N0V a0 AV ot ot a U S T N VB TR VD AV a6V 478 aV8 ol 2R eVl oWl atl o L A 0 A% BT 2 N AN G A S I E DN T I s R I ST .S .S Y. T

i11

AT AT T T e 1T e Ay 8 4 a4 & AR TeT T T T W e Y R Rkl w Y YRR~ x s XY IAT e ¥ ¥ XX FEERAK B A RBAN GRS P R Y Y 8 N e L”ﬁ




Bearing Error and the Central Limit Theorem

INTRODUCTION

~Bearings are frequently computed as the average of a number of readings.
Most of fixing theory assumes that the bearing error is normally distributed.
Averages are usually much closer to being normally distributed than individual
readings. The amount closer to normality depends o>n the amount of
independence between readings and on the number of readings:

i) If the readings are 100% dependent, then they are
the same and hence the distribution of the average is no
closer to normality than the original readings:

ii) If the readings are 100% independent, then the convergence
to normality is very fast as is shown in the accompanying
examples. The exact speed of convergence depends on the
shape of the original curve but not very much (This
convergence is predicted by the Central Limit Theorem
but the Central Limit Theorem does not address speed of
convergence, hence the graphs provided here).

As a first approximation one may assume that some of the sources of error
would be dependent and some independent. The independent error of the
readings would get smaller and closer to normality as the number of readings
being averaged increases. The dependent error of the readings would remain.
The amount of the error that is independent could be judged using the standard
deviation of the readings in comparison with the angular standard deviation.
(Note: In order to compare the two, the standard deviation of the readings
would need to be averaged).

THE GRAPHS

The method used to analyze the speed of convergence is demonstrated-in
Figure 1. The probability density functions for a Uniform distribution on the
interval [a,b] are presented. Each curve represents the density function for
the average of a different number of readings (n). Figure 1 has the curves
for n=1, n=2 and n=3. Notice that as the number of readings being used
increases, the apparent Normality of the curve is increasing.

Figure 2 presents two curves. The lower curve is the density function
for an average of three independent Uniform distributions. Superimposed on it
is the associated Normal curve calculated using the Central Limit Theorem.

The speed of convergence for non-symmetric curves is portrayed in
Figure 3. Two of the curves are the density functions of a Quadratic
distribution averaging different numbers of readings. The n=1 case is almost
a straight line, while the n=2 case is ¢ decent approximation to a Normal
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curve., The curve superimposed on the n=2 2ase is the associated Normal, again
determined by the Central Limit Theorem. (The Normal has mean and standard
deviation determined by the quadratic equation used in the distribution.)
The speed of convergence for non-symmetric density functions is not as rapid
as that for symmetric ones. Comparing Figures 1 and 3 is a bit misleading
since the non-symmetric example is concave down, a factor which benefits the
speed of convergence.

Figure 4 presents a non-symmetric density function which is concave up.
The curves pictured are for a Quadratic distribution with n=1 and n=2.
Superimposed on the n=2 case is the associated Normal., Note how much slower
the rate of convergence seems for non-symmetric, concave up density functions.

In general, symmetric density functions converge faster than do
non-symmetric ones, but concavity plays a larger role. Figures 5 and 6
illustrate this problem. Figure 5 is a Quadratic distribution with a concave
up density function and Figure 6 is a Quadratic distribution with a concave
down density function. On both figures, the associated Normal is superimposed
as a comparison with the n=2 case. The concave up density function barely
resembles a Normal distribution, while the concave down density function is
quite similar to its Normal.
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FIGURE 2
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FIGURE 4
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FIGURE 5
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FIGURE 6
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